Berechnung der Diels-Alder Reaktion

von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien

Protokoll

zum

Organisch-chemischen Praktikum für Fortgeschrittene 1

unter Anleitung von

Dr. Torsten Winkler

AK Prof. Dr. Herges

bearbeitet und vorgelegt von

Isabel Köhl

CAU Kiel

SS 2009

OC-F1

Berechnung der Diels-Alder-Reaktion von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien

1 Einleitung und wissenschaftlicher Hintergrund

Bei der Diels-Alder-Reaktion handelt es sich um eine [4+2]-Cycloaddition, die besonders bei dem Aufbau von Naturstoffen eine wichtige Rolle spielt. Sie ist nach ihren Entdeckern Otto Diels und Kurt Alder benannt, die 1950 für ihre Arbeit mit dem Nobel-Preis ausgezeichnet wurden. Es handelt sich bei der Diels-Alder-Reaktion um eine C-C-Bindungsbildung zwischen einem Dien und einem Alken, die zu einem Sechsring reagieren. Da bei der Reaktion keine reaktive Zwischenstufe eine Rolle spielt, wird eine solche Reaktion heute auch als "no mechanism"-Reaktion bezeichnet. Für den Ablauf der Reaktion ist es von Vorteil, wenn es sich bei den Reaktionspartnern um ein elektronenreiches Dien und ein elektronenarmes Alken, welches auch als Dienophil bezeichnet wird, handelt.

Abb. 1: Diels-Alder-Reaktion zwischen einem elektronenreichen Dien **1** und einem elektronenarmen Dienophil **2** zu einem ungesättigten Sechsring **3**, wobei Z elektronenziehende Gruppen darstellt.

Es gibt allerdings auch den umgekehrten Fall, bei dem ein elektronenreiches Alken mit einem elektronenarmen Dien reagiert. Bei dieser Art von Reaktion spricht man von "inversem" Elektronenbedarf.

Die Bindungsbildung erfolgt durch das Überlappen der Grenzorbitale der beteiligten Moleküle. Im Normalfall regiert das HOMO (highest occupied molecular orbital) des Diens mit dem LUMO (lowest unoccupied molecular orbital) des Dienophils, da nur bindende Wechselwirkungen entstehen, wenn Orbitale gleichen Vorzeichens überlappen. Bei dieser HOMO-LUMO-Wechselwirkung müssen nur zwei Elektronen in den beiden neu entstandenen Orbitalen untergebracht werden, was zu einem Energiegewinn führt, da das neue bindende Orbital energetisch unter dem HOMO liegt.

Abb. 2: Energieniveauschema der [4+2]-Cycloaddition zwischen einem Dien und einem Dienophil.

Die Reaktion verläuft stereoselektiv, was für einen konzertierten Mechanismus spricht, bei dem simultan drei π -Bindungen gelöst und zwei σ -Bindungen sowie eine π -Bindung gebildet werden. Bei dieser pericyclischen Reaktion wird ein aromatischer Übergangszustand **6** durchlaufen.

Die Anordnung der Substituenten in Dien 4 und Dienophil 5 bleibt im Produkt 7 erhalten.

Abb. 3: Konzertierter Mechanismus der Diels-Alder-Reaktion über einen aromatischen Übergangszustand.

Wenn es sich bei dem Dien um eine cyclische Struktur, wie z.B. Cyclopentadien, handelt sind bei der Reaktion zwei Produkte möglich, je nach dem, wie das Alken relativ zum Dien ausgerichtet ist.

Abb. 4: Reaktionsverlauf nach endo- oder exo-Addition

OC-F1

Berechnung der Diels-Alder-Reaktion

von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien

Das *endo* Produkt ist kinetisch kontrolliert und entsteht meist als Hauptprodukt aufgrund von sekundären Orbitalwechselwirkungen (*endo-Regel*). Das thermodynamisch stabilere *exo* Produkt wird in der Regel nur in untergeordnetem Maße gebildet.

OC-F1

Berechnung der Diels-Alder-Reaktion von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien

2 Syntheseübersicht

Abb. 5: Diels-Alder-Reaktion von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien, sowie die möglichen *endo* und *exo* Produkte.

öhl OC-F1 Berechnung der Diels-Alder-Reaktion von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien

Bei der Reaktion von 1,4-Dicyanocyclopentadien (8) mit 1,2-Dimethyl-1,4cyclohexadien (9) handelt es sich um eine Diels-Alder-Reaktion mit inversem Elektronenbedarf. Die zwei Cyano-Gruppen am Dien 8 ziehen Elektronendichte von den Doppelbindungen ab und die Methyl-Gruppen am Alken 9 verschieben Elektronendicht zur Doppelbindung hin. Der Mechanismus der Reaktion verläuft konzertiert über einen aromatischen Übergangszustand. Die Bindungsbildung kann an beiden Doppelbindungen des Alkens 9 erfolgen, wodurch sich zwei verschiedene Produkte 10 und 11 ergeben. Zudem können sowohl die *endo* Produkte 10a und 11a als auch die *exo* Produkte 10b und 11b gebildet werden.

3 Aufgabenstellung

Die Strukturen und Energien der Edukte, Produkte und Übergangszustände sind auf semiempirischem (PM3) und dichtefunktionalem Niveau (B3LYP/6-31G*) zu ermitteln. Desweiteren sollen die relativen Energien in einem Energieniveauschema dargestellt werden.

4 Berechnung von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4cyclohexadien

4.1 Allgemeine Arbeitstechniken

Die Energien wurden mit den Programmen HyperChem Professional^[3] und Gaussian^[4] berechnet. Die dafür benötigten Strukturen wurden in HyperChem Professional gezeichnet. Die Bildungsenthalpien und die Vibrationsspektren wurden auf semiempirischem PM3-Niveau durch Geometrieoptimierung berechnet. An Hand der Vibrationsspektren konnte überprüft werden, ob es sich bei den geometrieoptimierten Strukturen um Übergangszustände oder Produkte handelt. Um die erhaltenen Werte zu überprüfen und gegebenenfalls zu korrigieren, wurden die bereits auf semiempirischem Niveau optimierten Strukturen nochmals auf dem verlässlicheren, dichtefunktionalen B3LYP/6-31G*-Niveau mit Gaussian optimiert und berechnet.

4.2 PM3-Niveau

Die Berechnungen auf dem semiempirischen Niveau ergaben die folgenden Werte:

Substanz	$\Delta_{\rm f} {\rm H}$	niedrigste negative
	[kcal/mol]	Frequenz
8	101,3208847	
9	0,7568953633	
Σ Edukte	102,0777801	
ÜZ 10a	143,6025543	-871,53
Produkt 10a	94,19137573	
ÜZ 10b	144,7106476	-888,91
Produkt 10b	95,66690063	
ÜZ 11a	154,640686	-833,13
Produkt 11a	107,7856216	
ÜZ 11b	154,927063	-869,21
Produkt 11b	108,8722992	

Ergebnisse der Rechnung auf PM3-Niveau

Tab. 1: Bildungsenthalpien der Edukte, Produkte und Übergangszustände und die niedrigsten negativen Frequenzen der Übergangszustände.

Mit diesen Werten ergibt sich für die Aktivierungsenergie und die Reaktionsenthalpie:

Energien auf PM3-Niveau

	EA	$\Delta_{R}H$
	[kcal/mol]	[kcal/mol]
Produkt 10a	41,5247742	-7,88640437
Produkt 10b	42,6328675	-6,41087947
Produkt 11a	52,5629059	5,7078415
Produkt 11b	52,8492829	6,7945191

Tab. 2: Aktivierungsenergien und Reaktionsenthalpien der Produkte, berechnet auf semiempirischem Niveau.

OC-F1

Berechnung der Diels-Alder-Reaktion von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien

Energiediagramm auf PM3-Niveau

Abb. 6: Energiediagramm der endo- und der exo-Reaktion.

4.3 B3LYP-Niveau

Die Berechnung auf dem dichtefunktionalen Niveau ergab die folgenden Werte:

Substanz	HF	E ₀	G	niedrigste
	[kcal/mol]	[kcal/mol]	[kcal/mol]	Frequenz
8	-237567,5766	-267510,6469	-237530,55	104,8462
9	-195813,6793	-195701,6817	-195722,3114	85,7157
Σ Edukte	-433381,2559	-433212,3286	-433252,8614	
ÜZ 10a	-433352,3043	-433182,0097	-433209,4158	-483,9982
Produkt 10a	-433387,6878	-433214,5462	-433240,6283	69,0816
ÜZ 10b	-433354,3045	-433183,6921	-433210,6921	-501,8825
Produkt 10b	-433386,6504	-433213,3383	-433239,2942	47,3409
ÜZ 11a	-433344,072	-433173,3967	-433199,2409	-438,7894
Produkt 11a	-433375,6987	-433202,4167	-433227,1395	88,7927
ÜZ 11b	-433348,0525	-433177,3204	-433203,1276	-480,3019
Produkt 11b	-433375,2468	-433202,0772	-433226,94	67,1218

Ergebnisse der Rechnung auf B3LYP-Niveau

Tab. 3: Berechnungen der absoluten Energien, Nullpunktsenergien, Gibbs-Energien und imaginären Frequenzen auf dichtefunktionalem Niveau.

OC-F1

Berechnung der Diels-Alder-Reaktion

von 1,4-Dicyanocyclopentadien und 1,2-Dimethyl-1,4-cyclohexadien

Mit diesen Werten ergibt sich für die Aktivierungsenergien und die Reaktionsenthalpien:

Energien auf B3LYP-Niveau

	EA	$\Delta_{R}H$		
	[kcal/mol]	[kcal/mol]		
Produkt 10a	28,9516	-6,4319		
Produkt 10b	26,9514	-5,3945		
Produkt 11a	37,1839	5,5572		
Produkt 11b	33,2034	6,0091		

Tab. 4: Aktivierungsenergien und Reaktionsenthalpien der Produkte, berechnet auf dichtefunktionalem Niveau.

Energiediagramm auf B3LYP-Niveau

Abb. 7: Energiediagramm der endo- und der exo-Reaktion.

5 Fazit

Der Vergleich der Berechnungen auf dichtefunktionalem Niveau mit denen auf semiempirischem Niveau zeigt, dass die Ergebnisse in der gleichen Größenordnung liegen. Trotz der geringeren Rechenzeit stellen die Berechnungen auf semiempirischem Niveau somit eine gute erste Näherung dar.

Bei der Berechnung zu den Produkten **10a** und **10b** ist auf semiempirischem das *endo*-Produkt **10a** das kinetisch kontrollierte Produkte. Das *exo*-Produkt **10b** ist hingegen das thermodynamisch kontrollierte Produkt. Auf dichtefunktionalem Niveau hingegen ist das *exo*-Produkt **10b** das kinetisch kontrollierte Produkt und das *endo*-Produkt **10a** das thermodynamisch kontrollierte Produkt. Bei der Berechnung zu den Produkte **11a** und**11b** ergibt sich ein anderes Bild, denn hier ist auf semiempirischem und dichtefunktionalem Niveau jeweils das *exo*-Produkt **11b** das kinetisch kontrollierte Produkt. Das *endo*-Produkt **11a** hingegen ist hier das thermodynamisch kontrollierte Produkt. Da die Energie der Produkte **11a** und **11b** über der Energie der Edukte liegt, handelt es sich um eine endotherme Reaktion. Es ist somit davon auszugehen, dass das Gleichgewicht dieser Reaktion auf der Seite der Edukte liegt, bzw. die Reaktion gar nicht stattfindet.

Abschließend lässt sich feststellen, dass man nicht absolut sagen kann, dass das *endo*-Produkt immer kinetisch bevorzugt ist und das *exo*-Produkt immer das thermodynamisch stabilere ist.

6 Literatur

[1] U. Lüning, *Organische Reaktionen*, 2. Aufl., Spektrum, München, **2007**, S. 165-175.

[2] T. Laue, A. Plagens, *Namens- und Schlagwort-Reaktionen*, 5. Aufl., Teubner, Wiesbaden, **2006**, S. 97-104.

[3] HyperChem Professional 7.52, Hypercube, Inc., Gainesville, Florida, USA.

[4] Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.